NC-Anbohrer mit zyl. Schaft
Ausführung: Sehr stabiles Modell, mit präzisem Spitzenanschliff und schmaler Querschneide. Mit einem Seitenfreiwinkel von $12^{\circ} / 30^{\circ}$. Ab $\varnothing 6 \mathrm{~mm}$ mit Mitnahmefläche nach DIN 6535-HB. \varnothing-Toleranz:
bis $\varnothing 10 \mathrm{~mm}=\mathrm{h} 6$,
$\mathrm{ab} \varnothing 10 \mathrm{~mm}=\mathrm{h} 8$.
117290° - Zum Anbohren und gleichzeitigem Ansenken,
TiAIN
1176
TiAIN wenn ein Spiralbohrer mit kleinerem \varnothing folgt.
142° - Besonders schonend für die Schneiden des nachfolgenden VHM-Spiralbohrers, wodurch dieser eine deutlich höhere Standzeit erzielt.

frormat
professional quality

1172/1176

Einsatz	STAHL			INOX			GUSS		SOND.-LEG.	NE-METALLE				GEHÄRTETER STAHL			
	$\begin{aligned} & <700 \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	$\begin{aligned} & <1000 \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	$\begin{aligned} & <1400 \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	ferrit./ martens.	austenitisch	Duplex	$\begin{gathered} \text { GG/ } \\ \text { GTS } \end{gathered}$	GGG	Titan > $850 \mathrm{~N} / \mathrm{mm}^{2}$	$\begin{aligned} & \text { Alu< } \\ & 8 \% \mathrm{Si} \end{aligned}$	$\begin{gathered} \text { Alu }> \\ 8 \% \mathrm{Si} \end{gathered}$	Kupfer/ KupferLeg.	Graphit/ GFK/CFK/ Duropl.	$\begin{aligned} & <55 \\ & \text { HRC } \end{aligned}$	$\begin{aligned} & <60 \\ & \text { HRC } \end{aligned}$	$\begin{aligned} & >60 \\ & \text { HRC } \end{aligned}$	Bestell- Nr.
	65	52	42	30	24	19	90	72	40	100	100	-	-	-	-	-	1172
	65	52	42	30	24	19	90	72	35	200	200	-	-	-	-	-	1176

				format	format	
			STAHL	1172	1176	Bestell- Nr.
Nuten-		Gesamt-	$<700 \mathrm{~N} / \mathrm{mm}^{2}$	TiAIN	TiAIN	
$\begin{gathered} \varnothing \mathrm{h} 6 \\ \mathrm{~mm} \end{gathered}$	länge mm	länge mm	$\begin{gathered} \mathrm{f} \\ \mathrm{~mm} / \mathrm{U} \end{gathered}$	€	€	
2	8	38	0,03	23,40	23,40	... 0200
3	12	46	0,05	23,40	23,40	... 0300
4	12	55	0,06	25,40	25,40	... 0400
5	14	62	0,07	29,00	27,30	... 0500
6	16	66	0,09	32,10	29,90	... 0600

Hartmetallbestückter Spiralbohrer mit zyl. Schaft
Ausführung: Mit präzisem Spitzenanschliff, dampfbehandelten Nuten und hartmetallbestückten Schneidplatten nach DIN 8010. Lieferung ab $\varnothing 3$ mm: Schaft mit Mitnehmer nach DIN 1809 zur Verwendung in Klemmhülsen.
Anwendung: Besonders für Stähle bis 60 HRC, Hartguss über 300 HB, Reinmolybdän und zähharte Bronzen verwendbar.

Einsatz	STAHL			INOX			GUSS		$\begin{aligned} & \text { SOND.-LEG. } \\ & \text { Titan > } \\ & 850 \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	NE-METALLE				GEHÄRTETER STAHL			
	$\begin{gathered} <700 \\ \mathrm{~N} / \mathrm{mm}^{2} \end{gathered}$	$\begin{aligned} & <1000 \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	$\begin{aligned} & <1400 \\ & \mathrm{~N} / \mathrm{mm}^{2} \end{aligned}$	ferrit./ martens.	austenitisch	Duplex	$\begin{aligned} & \text { GG/ } \\ & \text { GTS } \end{aligned}$	GGG		$\begin{aligned} & \text { Alu< } \\ & 8 \% \mathrm{Si} \end{aligned}$	$\begin{gathered} \text { Alu }> \\ 8 \% \mathrm{Si} \end{gathered}$	Kupfer/ KupferLeg.	Graphit/ GFK/CFK/ Duropl.	$\begin{aligned} & <55 \\ & \text { HRC } \end{aligned}$	$\begin{aligned} & <60 \\ & \text { HRC } \end{aligned}$	$\begin{aligned} & >60 \\ & \text { HRC } \end{aligned}$	Bestell- Nr.
$\mathrm{V}_{\mathrm{c}}[\mathrm{m} / \mathrm{min}]$	80	64	51	-	-	-	80	70	-	-	-	180	-	20	10	-	1191

